XCOR Aerospace, Inc. Informed Consent Form Prepared in accordance with FAA Regulation 14 CFR 460.45

Prepared for:

Name of Participant

Lome Address

City, State 7IP

Phone and L-mail

Date of Birth

Section 1 -Definitions/Acronyms

Porticipant means a Space Flight Participant: an individual, who is not creve, carried aboard a launch velicle, suborbital rocket, or reeniry yehiele.

Stuborbital rocket neans a whicle. rocket-propelled in whole in part. whose thrust cxeceds its lift for the majority of the rocket-powered portion of its ascent. Lyns is a suborbital rocket.

Síuborbital space flight means a flight aboard a suborbital rocket.
Orbital space flight means ant orbital Ilight.
Ifman space fight inoident means an unplanned event that poses a high risk of causing a serious or fatal injury to a space ilight participant or erew.

Catastrophic failure means an unplanned event which results in death, serious injury, or loss of the yelicle.

Latmeh means a rocket powered flight of a manned suborbital or orbital rocket powered velicle. Taunch includes rockel powered flight of a suborbital rocket.

Section 2-Risk Disclosures

1. As required by liAh regulations ($14 \mathrm{CliR}^{2} 460.45(\mathrm{a})(1)$). ACOR hereby informs Participant that the inherent risks of a I Y.N. fight include bat are not limited to claustrophobia, explosion, explosive decompression, Fear of falling, Fear of heights, Cear of open spaces, live, frosibite, heart palpitations, hyperventilation, hypoxia, loss of consciousness, loss of life support, muscle strain, natuse, smoke inhalation, sulfocation, sumburn, trips and falls, vehicle crash, whicle loss of control, vehicle structural failure. and womiting. These hazards could result in a serious injury. death. disability. or total or partial loss of physical and mental function. Participant acknowledges receipt of this information.
2. As required by liA regulations ($14 \mathrm{CliR}^{2} 460.45(\mathrm{a})(2)$), XCOR hereby informs Participant that there are hafards intherent in I.YNX tlight that are not yet known. Participant acknowledges receipt of this inlormation.
(Slip Initials)
3. As required by FAA regulations (14 CFR $460.45(a)$ (3)), YCOR hereby informs Participant that participation in space flight may result in death, serious injury, or total or partial loss of physical or mental finction. Participant acknowledges reee of this information.
4. As required by liAh regulations (14 CRR $460.45(\mathrm{~b})$), XCOR lercby informs Participant that the United States Government has not certified the LYNX as safe for carrying crew or space flight participants. Participant acknowledges receipt of this infornation.
5. As required by litA regulations ($14 \mathrm{ClR} 460.45(0)(1)$). XCOR heroby informs Participant that the total number of peop le who have been on an orbital space fight is $\mathbf{5 3 0}$ (as of March $18^{\text {th }}, 2011$) and the total number of people who have died or heen seriously injured on an orbital space llight is 22 (as of March 3rd. 2013). Participant acknowledges receiph of ithis information.
6. As required by FAA regulations (14 CFR $460.45(\mathrm{c})(1)$), XCOR hereby informs Participant that the total number of people who have been on a suborbital space light is $\mathbf{1 4}$ (as of Hareh3rd. 2013) and the total number of peotle who have died or been seriously injured on a suborbital spase flight is $\mathbf{1}$ (as of Marel 3rd, 2013). Participant acknowledges receipt of this inlormation.
(SFP Inilials)
7. As required by $\mathrm{l}^{\mathrm{i} h} \mathrm{~A}$ regulations ($14 \mathrm{CliR} 460.45(0)(2)$). ACOR herebe informs Participant that the total number of orbital launches and reentries conducted with people on board is 292 (as of Warch 3rd, 2013) and the number of catasirophic failures of those launches and reentries is 6 (as of Liarch 3rd, 2013). Participant acknowledges reveipt of this information.
8. As required by 141 regulations ($14 \mathrm{CliR} 460.45(c)(2)$), XCOR hereby informs Participant that the total number of suborbital launehes and reentries condueted with people on board is 912 (as of March $3 \mathrm{rd}, 2013$) and the number of catastrophic failures of suborbital launches and reentries is $\mathbf{1 1}$ (as of ciareh 3rd, 2013). Participant acknowledges receipt of this inlormation.
9. As required by liAA regulations (14 CFR 460.45 (d)), YCOR hereby informs Participant that LYNX does not yet have a safety record because it has not yet been built. XCOR's first two rocket powered wehicles have a total of 66 flights. with zevo accidents and zero human space llight incident equivalents. Participant acknowledges receipt of this information.
(Slip Initials)
10. As required by lina regulations $(14 \mathrm{CliR} 460.45(\mathrm{~d})(1))$. λ OOR hereby informs Participant that the number of YVY fights to date is zero as of March 3rd, 2013. XCOR plans to conduct at least 50 successfin test llights before making I Y.NY available for Participant flights. Participant acknowledges receipt of this information.
(SFP Initials)
11. As required by FAA regulations (14CFR 460.45(d)(2)), XCOR hereby informs Participant that the number of $L Y V A$ aceidents and human space flight incidents to date is zero, as of Harch 3rd, 2013. Participant acknowledges receipt of this information.
12. As recuired by FAA regulations (14 CFR 460.45(d)(3)), XCOR hereby informs Participant that sine ihe number of T. YNX accidents and human space light incidents to date is zero, no corrective antions hawe been taken to resolve any LYNX aecidents or human space flight ineidents. as of Marel 3rd, 2013. Participant acknowledges reocipt of this information.
13. As required by lin iegulations (14 CliR $460.45(\mathrm{c})$), XCOR hereby informs Participant that Participant may request additional information regarding any accidents and human space light incidents reported. Participant acknowledges receipt of this intormation.
14. As required by FAA regulations (14CFR 460.45(1)), XCOR hereby informs Partic ipant that XCOR must provide each space flight participant an opportunity to ask questions orally to acquire a better understanding of the hazards and risks of the nission. Partieipant acknowledges receipt of this information.

15. As required by liAh regulations (14 CFR $460.45(\mathrm{f}), 14 \mathrm{ClR} 460.45(\mathrm{f})(1)$), Participant hereby acknowledges that Participant has been informed of the risks inherent in a LYi V λ flight. ineluding the risk of death. serious injury, or total or partial loss of physical or mental finction.
16. As recpuired by FAA regulations (14 CFR 460.45(1)(2)), Participant hereby states that Parlieipant understands the risks inherent in a I.Y.N. flight, including the risk of dealth, serious

17. As recpuired by FAA regulations (14 CFR $460.45(1)(2)$) Participant hereby states that Participant's presence on board the T. Y.NY is voluntary
18. Partieipant hereby acknowledges that Participant enters into this T ynx light freely and without mental reservation. Participation hereby signilies their understanding that il the risk information herein portrays level of risk that Participant is unwilling or unable to aceep, Participant should not lly aboard I.ynx at this time.

Section 3 - Hazards to Spaceflight Participants Table 1. Risk Matrix

Severity Levels

Negligible: minor cffect on partieipant experience: nuisance only
Marginal: some participant disconfort: inpacts mission of participant enjoynent
Major:
Critical: significant participant discomfort: minor partiçipant pain; possibly minor participant injury: probable abort significant participant injury, possibly permanent; possible life-threatening situation: inmediate abort
Catastrophic: participant's life in immediale danger participant permanently disabled: immediale abort

Likelihood Levels

Likely:
Possible:
TInlikely:
Rare:
Remote:

Risk Levels
Unacecptable: Tarticipant serious injury or death likely. Risk to salety of uninvolved public prohibits thight at this risk Revel.
Fxtreme:

Iligh:
Moderate:
Lont:
may happen on any giventlight. (nore than 10%) could happen on any given flight: likelihood ($2 \%-10 \%$) probably will not happen on any given flight; ($0.5 \%-2 \%$) very unlikely to happen on any given tight ($0.01 \%-0.5 \%$), but will probably happen during life of vehicle so unlikely on any given flight (less than 0.01%) that it may newer happen during life of vehicle

Paricipand serious imjury or death possible. Parlicipant may choose to woluntarily assume this level of risk Participant scrious ingury or death unlikely, but cannot be ruled out. Participant minor injury possible.

[^0]Table 2. Summary of Physical Hazards to Spaceflight Participants

Table 3. Summary of Physical Llazards and Liffects, by Likelihood of Occurrence

Physical ILazard	Failue Mechanism	Physical Effects	Likelihood	Strerity	Risk
Weightlessness	-Vorinal vecurrence during unpowered parabolic tlight ("ower the top")	Kinesthetic confusion	Likely	Negligible	Low:
Weightlessness	Normal occurrence turing unpowered parabolic tlipht ("ower the top")	Anxietyirapid heatbeat	Likely:	Marginal	Moderate
Weightlessness	-Normal occurrence during unpowered parabolic tlipht ""over the top")	Fear of falling	Likely	Marginal	Doterate
1.ammin sitectimate	Sunbıar \square	Miner burns, Catigue	Likely	Merginal	Voderate
\square ()	$\square \times$	-		-	
IIigh 9 forces	Normal oecurrence during powered ascent, reentry	Change in cardiare chyt	Likely	Majol	IIigh
Weightlessness	Norimal occurrence during unpowered parabolic tlipht ("ower the top")	Nausearoniting	Likely	Major	IIigh
	-		,		
	-		\square		-
Weightlessness	Normal occurrence turing unpowered parabolic tlisht " "over the top")	Euphoria	Possible	Negligible	Low
					-
High (f Lerees	Vormal oceurnence during powered axient. Tentry	Fatigutic	Possible	Marginal	Voderate
ITigh to forces	Normal vecurrence turing powered ascent, reentry	Feeling faint	Possible	Marginal	Moderate
1.ow l-tessure	bife support sysumm fuilute	Headreche	Possible	Mirrginal	Voderate
High (f lorces	Nermal oceurtione during powered :lisemb. TCuntry	I.css ol eonsciolsiness	Possible	Marginal	Voderate
Fhysical impact trauma	Exit fron spacecratt	Minor injury	Possible	Marginal	Maderate
High (f limees)	Vermal oceurnele during powered axient. Temblry	Muscie strain	Possible	Marginal	Voderate
Higl I Becibul Noise	Explosion \square	Kingingemain in cars	Possible	Marginal	Voderate
High I Deemal Noise	Fixessive migimenoise	Kingingipain in cars	Possible	Mirginal	Voderate

Pluysical Hazard	Failure Mechanism	Plysical Fitects	1,ikelihood	Severily	Risk
I.css of lremultitble almosphere	I.ife support failure	Sulfocation	Ratic	Comasitrophic	High
High Lemperatire	Herlt sthield trilure	Death	Rate	C:mastrophic	High
Phaysical impace triumit	(Tatsh or slruclural frilute	1 death	Rate	Catasitophic	High
ITigh tenperature	Tire	Severe burns	Rare	Catastrophic	ITigh
Fhysical impact trauma	Crash or structural failure	Severe injury	Rare	Catastrophic	ITigh
Weightlessness	Vormal occurrence during unpowered parabolic tlipht (""ower the top")	Vomiting into mask Choking on romitus	Rare	Catastrophic	ITigh
	\square				
			\cdots		\cdots
High IJecibel Anowe	Fixplosion	Vertigre lims of latance	Kımout	Marginal	16\%
-		-	-		$)$
1.aumily sitcelimate	1) \%ngerous wicilife (fiumch site)	Animal hicestingermitul	Kunote	Mrijor	1.0w
Low Pressure	Explosive decompression	Loss of consciousness	Renote	Major	Low
Throupheut tlight	Throughout tlight	Loss of rational thought	Renncte	Major	Low
-	-			\sim	
ITigh 0 forces	Normal oecurrence during powered ascent, reentry	Bone fracture	Renıcte	Critical	Moderate
1.0w 19tessure	Explosibe decempression	Hypoxia	Kernote	Critical	Voderate
Low Pressure	Explosive decompression	Fulnonary edenia	Rentete	Critical	Woderate
			-		
Explosion	Ingine failure	Rrain damage	Rentote	Catastrophic	IIİgh
Launch site climate	ILeatstroke	Rrain damage	Renlote	Catastrophic	ITigh
1.ow Pressure	Explosive decompression	Coronary embolism	KแாOL	Chassirophic	High
Explosion	Ingine failure	Death	Renıate	Catastrophic	IIigh
1.runily site climate	Herlstrolie	Death	R Mnote	Chasatophic	High
Loss of breathable atmosphere	Coolant leak	Death	Rencate	Catastrophic	IIigh
1.0w Pressure	Life support systum frillot	1)eath	Rumole	Cabastrephie	High
Low Pressure	Explosive decompression	Death	Renıcte	Catastrophic	ITigh
UV sumlight	Irolenged look ing inte sun	P'erminenen blinitres	Runote	C.hasarophic	Higl
IIigh Decibel Naise	Explosion	Fermanent hearing loss	Renıcte	Catastrophic	ITigh
1.aumiln siluclimate	Bird sitrilie	l'ibo incapaciation ${ }^{\text {a }}$	Kแmote	Calasitephic	High

Section 4 －Historical Safety Record of Manned Orbital and Suborbital Flight

Section 4.1 －Manned Orbital Flight History

FAA regulations（ 14 CFR $460.45(\mathrm{c})(1)$ ）require XCOR 10 inform Participant ol＇the total number of people who have been on an orbial space flight．That number is 520，as follows：
ケッ3－○小：

Yois．ahiod：
Er．土．ai：

$$
\begin{aligned}
& \text { Tp:11冗: } \\
& \text { Boy-1<: }
\end{aligned}
$$

120	Bx－1－1：	¢゙ロ
－	O－Y． $1<$ TY	1 \％
：	B－Y． 14	\％ 1
1%	B．102＜n－	\because
	$1 \therefore-51:$	520

lithregulations（ 14 CFR $460.45(\mathrm{c})(1)$ ）require XCOR to intorn Participant of the total number of people who have died or been scriously injured on an orbital space flight．That number is 22 (4.2%) ，as follows：

Soyua 1．Fadimir Komarov， 24 Apr 1967 parachute lailure，killed on impact
Problem：The main parachute canister delormed upon deployment，preventing the main parashute from opening．Komarov deployed the reserve parachute，but it becane entangled with the main and also did not open．The capsule impacted the ground at 90 mph straight down，and Komarov was killed on impact．
Vitigation：Lynx does not use a parachute for landing．Lynx will land on a conventional runway．

Apollo 13，Fred 1 Iaise． 13 Apr 1970．emergency huar return．contracted kidney infection
Problem：During an emergency lunar return．Haise＇s efforts to conserve water for cooling led to his severe dehydration and subsequent kidney infection．
Vitigation：Lynx cannot remain airborne for more than 30 minutes．This is too short a time in which to contract a kidney infection．

Soyuz 11．Georgi Dobrowisky： 24 Apr 1971，cabin pressure leak，suftocated during reentry
Soyuz 11．\ladisov Volkov． 24 Apr 197 l ，cabin pressure leak．suffocated during reentry
Soyuz 11．Viktor Patsayev． 24 Apr 1971．cabin pressure leak，suffocated during reentry
Problem：Dobrovolsky，Volkov，and Patsayev wear not wearing pressure suits，When the ir cabin depressurized in space due to a pyrotechnies mallunction，they had no hope of survival． Mitigation：Spacelight participants aboard I ynx will wear pressure suits．

Apollo Soyuz．Lom Staftord． 24 Jul 1975，capsule contiguration error．breathed toxic fumes Apollo soyuz．Vance lbrand． 24 Jul 1975，capsule configuration crror，breathed toxic fumes A pollo Soyut，Deke Slayton， 24 Jul 1975 ，capsule conliguration error，breathed toxic fumes Problem：A conliguration error caused the capsule＇s tlight computer to fire the attitude thrusters during the parachute descent in an eflort to keep the capsule level．A cabin air vent intake was located near one of the attitude thrusters，and toxic fumes were drawn into the cabin．
Mitigation：Lynx will not use toxic propellants．Lynx will not use a flight conputer．
STS 51－I，Dick Scobee， 28 Jan 1986，boosien seal Cailure，vehicle breakup，drowned
STS 51－I，Michael Simith， 28 Tan 1986，booster seal failure，vehicle breakup，drowned
ST＇s 51－L．Judy Resnik， 28 Jan 1986，booster seal failure．vehicle breakup．drowned
STS 51－L．E1lison Onizuka， 28 Jan 1986，booster scal failure，yehicle breakup，drowned STS 51－L．Ron MeNair， 28 Jan 1986，booster scal failure，whicle breakup，killed on impact STS 51－L．Greg Jarwis． 28 Jan 1986．booster seal failure，wehicle breakup，killed on inpact STS 5i－I，Christa MeAulifle， 28 Jan 1986，booster seal fail，wehicle breakup，killed on impact Problem：Challenger was destroyed when one ol＇its Solid Rocket Boosters burned through its aft attach point，rotated about its forward attach point，and collided with the Lxternal lank．
Vitigation：Lynx will not use cither Solid Roeket Boosters or an Lixternal Iank．
STS－107．Rick Husband， 01 Feb 2003，debris strike on wing，vhicle breakup．suffocated STS－107，Willie McCool， 01 Feb 2003，debris strike on wing，whicle breakup，sullocated STS－107，Wiehael Anclerson， 01 Feb 2003，debris strike on wing，vehicle breakup，sulfocated STS－107．David Brown． 01 Feb 2003．delris strike on wing．vchicle breakup，suffocated SIS－107．KC Chawla． 01 lich 2003．delris strike on wing，vehiele breakup．suffocated STS－107．Laurel Clark， 01 Feb 2003．debris strike on wing，whick breakup，suffocated STS－107．Ilan Ramon． 01 licb 2003．debris strike on wing，veliele breakup．suffocated Problem：Columbia broke up during reentry because there was a hole in the left wing＇s heat shield．The hole was punched in the wing by a piece of debris that fell ollt the External Tank Mitigation：Lynx will not use an lixternal Tank．In the general case of a heat shield failure， Lynx Gilk 1 will remain airworthy even after a total failure of the heat shicld．
liA regulations（ 14 CliR 460.45 （c）（2））require $\lambda C O R$ to inform Participant of the total number of orbital launches and reentries conducted with people on board．That number is $\mathbf{2 8 0}$ ，as dollows．

そーシーシ小：

ケーanlanod：
©ri $\because 1$ ：

FAA regulations（ 14 CFR $460.45(\mathrm{e})(2)$ ）recpuire XCOR to inform Participant of the total number of eatastrophic failures of orbital launcles and reentries condueted with people on board．That number is $\mathbf{\$}(2.9 \%)$ ，as follows：

Tッン
$\because \because 1-1 \because:$ I こ－と 1 ：

8

The fatality injury rate (4.4%) is higher than the vatastrophic failure rate (2.9%) because most manned orbital space flights have carried more than one person.

Soyus 1. Fadimir Komarov, 24 Apr 1967, parachute lailure, killed on impact
Problem: The main parachute canister deformed upon deployment, preventing the main
parachute from opening. Komarov deployed the reserve parachute, but it became entangled with the main. and also did not open. The capsule impacted the ground at 90 mph straight dowit, and Komarov was killed on inpact.
Mitigation: $T_{\text {ynx }}$ does not use a parachute for landing. T ynx will land on a conventional runway.

Apollo 13, Fred ILaise. 13 Apr 1970 . energency lunar retum, contracted kidncy infection Problem: During an emergency lunar return, I Iaise's cftorts to conscrwe water for cooling led to his severe delydration and subsequent kidney infection.
Witigation: Jynx cannot remain ajrborne for more than 30 minutes. This is too short atime in which to contract a kidney infection.

Soyuz 11. Dobrowolsky et al. 24 Apr 1971. cabin pressure leak, suffocated during reentry Problem: Dobrowolsky. Volkov. and Patsaycy wear not wearing pressure suits. When their cabin depressurized in space due to a protechnies maltunction, they had no hope of survival.
Mitigation: Spacellight participants aboard I.ynx will wear pressure suits.
Soyuz 18-1. Lazarev et al. 05 apr 1975. stage separation failed. aborted launch. crew OK Problem: the third stage of the booster failed to separate from the second stage. The locks failed when the third stage ignited, but the gyrations caused be the uncontrolled separation triggered the automatic abort.
Mitigation: J ynx will not use an upper stage to cary crew or spacellight participants. During tlights with spacellight participants aboard, there will be no separation eyents. In the general case of an engine failure. the pilot will fly back to the field and land. XCOR's primary mission rule for Lymx is that the pilot shall be able to abort to a sate landing an any mone during the flight.

A pollo Soyuz, Stalford et al, 24 Tal 1975, capsule conliguration error, breathed toxic tumes Problem: A conliguration error caused the capsule's tlight computer to fire the attitude thrusters during the parachute descent in an effort to keep the capsule level. A cabin air went intake was located near one of the attitude thrusters. and toxio fimes were drawn into the cabin. Mitigation: Lynx will not use toxic propellants. Lynx will not use a flight conputer.

Soyuz T-10-1, litov et al. 26 Scp 1983. booster caught firc, escape tower fircd. crew OK Problem: There was a fiel spill shortly before the scheduled liftoft. and the booster caught fire. Ground controllers succeeded in liring the escape tower two seeonds before the booster exploded. The crew was bruised by the high acceleration of the escape tower, but uninjured.
Mitigation: Soyu\% T-10-1 is an example of a pre-flight lire from which the erew successlitly escaped. I.ynx ground operations will be designed to minimize the risk of fire, but in the general case of a pre-flight emergeney, the pilot and participant will jump out of the vehick and run to a pre-designated sate haven. If the pre-flight emergeney is a fire. the crash truck will cover their escape by deluging the vehicle with water or lire-fighting foam. The pilot and participant can also lower their visors and go on suit oxygen, to avoid breathing smoke and fumes as they exit the whicle.

STS 51-L. Scobec et al. 28 Jan 1986. booster scal failure. vehicle breakup. erushed drowned Problem: Challenger was destroyed when one of its Solid Rocket boosters burned through its aft attach point, rotated about its lorward attach point, and collided with the Fxternat Tank.
Mitigation: Tynx will nol use eilher Solid Rocket Boosters or an Fixternal Tank.
STS-107. Ilusband et al. 01 Feb 2003. debris strike on wing, whicle breakup, suffocated
Problem: Columbia broke up during reentry because there was a hole in the left wing's heat shield. The hole was punched in the wing by a piese of debris that fell off the lixternal lank during launch.
Mitigation: Synx will not use an Fexemal Tank. In the general case of a heat shield lailure, Lynx will remain airworthy cwen after atotal failure of the leat sheld.

Section 4.2 －Manned Suborbital Flight History

FAA regulations（ 14 CFR $460.45(\mathrm{c})(1)$ ）require XCOR to inlorm Participant of the total number of people who have been on a suborbital space flight．That number is 12，as follows：

[^1]
3
シーツ．1－ $1 \therefore-\div 1$ ：

4

FAA regulations（ 14 CFR $460.45(\mathrm{c})(1)$ require YCOR to inlorm Participant of the total number of people who have died or been seriously injured on a suborbital space flight．That number is $\mathbf{1}$ （7．1\％），as follows：

Y－1！
1

FAA regulations（ 14 CFR $460.45(6)(2)$ ）require XCOR 10 inlorm Participant of the total number of＇suborbital launches and reentries conducted with people on board．That number is 935 ，as follows：

liA regulations（ 14 ClR $460.45(\mathrm{c})(2)$ ）require $\lambda C O R$ to inform Participant of the total number of catasirophic lailures of suborbital latune hes and reentries conducted with people on board．
That number is $\mathbf{1 0}(1.1 \%)$ ，as follows：

The fatalityinjury rate（ 7.1% ）is higher than the catastrophic lailure rate（ 1.1% ）because FAA regulations specily space lights for the number ol people subject to latalityinjury，but include all suborbital flights for the number of flights subject to catastrophic failure．The single fatality in manned suborbital space flight is oftset by just over a dozen sucesssful suborbital space llights，compared to the ten fatalities and serious injuries in nearly a thousand suceessfint suborbital lights overall．

Ba 349 _Vatter, Lothar Sieber. 01 Har 1945, canopy separated. pilot killed on inpact
Problem: The Ba 349 lanched vertivally at high acoeleration. When Sieber's canopy separated, his head rest separated with it, and he broke his neck.
Mitigation: T ynx will take of horizontally, at about 1 gaceeleration. T ynx" s doors are not subject to the wartime manufacturing conditions that caused the Ba 349 canopy to separate. Tymx's headrests are not attached to the doors.
l-S4G ZELNLAL, Bob Lumer. 02 Jun 1954. nat landing overrun. pilot injured Problem: 7FI MAT stands for 7, Fro I engh tauncher, Mat Assisted I anding. Afler a rockel assisted takeoff, the modilied F-84G landed on an in flated rubber mat. On the first mat landing, the tailhook failed to engage the arresting cable. and the airplane slid oft the mat and aeross the desert floor. The airplane was severely danaged, and the pilot was seriously injured.
Mitigation: Lynx will not use a mat for landing. Lyns will land on a conventional rumpay.
X-2 Mel Apt, 27 Sep 1956, inertial colpling, aircrall broke up, pilot killed
Problem: The aceedent flight was Apt's lirst $\mathrm{X}-2$ tight. On his very first light in the airplane, Apt flew the X-2 faster than it. or any other airplane, had ever flown. This took the airplane into conditions Apt had not been trained for. When the airplane experienced inertial coupling and departed controlled flight, Apt was unable to recoper. The airplane crasled. and Apt was killed. Mitigation: Lynx will be flight tested incrementally, using experieneed pilots to sneak up on envelope expansion maneuvers. Tynx pilots will remain within Tynx's light proven envelope on every llight with spacellight participants aboard.

Trident II. Charles Goujon. 21 May 1957, hydraulic failure, aircraft broke up, pilot killed Problem: The airplane broke up in flight over the Paris tir Show. The leading hypothesis for the in-flight breakup is that it was due to a hydraulic failure driving a control surface hard over in high speed llight.
Mitigation: Tynx will not use hydraulics for driving control surlaces. All Tyx control surlaces will be manually operated and powered by the pilot's nuseles. Lyix will have an electric motor assist on the pitch control cable, but this motor will normally be unpowered. and it can be inmediately isolated both electrically and nechanically it it operates uncomnanded.

F-100D 7EI, Al Black burn, March 1958, booster sep failure, pilor ejected, cracked a vertebra Problem: The F-100D 7 FI, was another zero length latucher, with a large solid rockel booster attached to the bottom of the airplane. On the accident flight. the booster would not separate from the airplane. Since the booster hung below the landing gear, the airplane could not be landed with the booster still attached. and the pifot had to cject. By the time he ciected. the wind hat come up to 30 mph . The combination of the high wind and his small, last-opening parachute made his parachute landing cuite rough, and he cracked a vertebra in his back when he landed. Mitigation: T ynx does not use a solid rocket hooster, and there is no possible stores separation failure that could prevent Lynx from landing on a numway.

Mercury-Redstone 4, Gus Grissom. 21 Jul 1961. hatel blew by itself. capsule sank, pilot OK Problem: The capsule had explosive botts which allowed the pilot the blow the hatch and escape from the capsule in the event the capsule was simking. On the accident light, the hatch blew by itself, and the capsule filled with water and sank.
Mitigation: J ynx will not land on water. Tynx will land on a conventional runway Cynx will not have explosive bolts on the doors.

X-15. Jask Mohay: 09 Nov 1962. abouted flight. aireraft overtumed, pilot seriously injured
Problem: The light was aboried, and the airplane landed at the abort site at Mud J ake. On landing, the lelt skid collapsed, the airplane overturned, and the pilot was seriously injured and trapped in the cockpit.
Mitigation: The primary mission rule in planning Lynx flight profiles is that Lynx nust always remain within gliding range of a suitable airport. If the pilot has to abort the flight. he merely lands the vehick back at _lojauc or at a designated alternate airport.

NF-104A, Chuck Yeager, 10 Dee 1963, arcraft went into spin, pilot ejected, serionsly injured Problem: The $\mathrm{N}^{i}-104 \mathrm{~A}$ was a jet fighter adapted for use as an acrospace trainer. to teach Air lioree Aerospace Rescarel Pilot School students how to fly abowe the sensible atinosphere. The - Nli-104A flight profile was very unforgiving, and if the pilot didn't fly exactly on profile, he could get into a deep stall from which he could not revower. In a deep stall, the NF-104 A's jet engine will not start, so the pilot canol ty the airplane out ol'a deep stall. The aceident pilot llew too low a profile, deep stalled the airplane, and was forced to eject. On ejection, his cjection seat inalfunctioned and severely bumed his fase and hand.
Mitigation: The Lynx flight profile is nueh less sensitive to pilot crror than the flight protile of the $\mathrm{N}-104 \mathrm{~A}$. In addition. the Lyme will have a method of recovering from a decp stall should the oceasion arise. Should this method fail, the pilot and participant can bail out; a deep stall is the most benign bailout environment possible.

X-15. Hike Adams. 15 Nov 1967. multiple maltinetions, pitch divergence, broke upp. pilot killed Problem: The airplane's electrical system had an internittent malfunction, which may have been related to an on board astronomy experiment which was also malfunclioning. Adams was troubleshooting both the electrical latiland the experiment, and he apparently got distracted enough while troubleshooting to lose track of his yaw orientation. The X- 15 reentered lacing sideways, and went into a spin. This was the first and only hypersonic spin in history Adams recovered from the hypersonic spin, but by the time he did. the airplane was at muel lower altitude than it was intended to fly at that airspeed. The dynamic pressure, and with it the control responsiveness, increased faster than the adaptive flight control system could decrease its gain. The airplane went into limit cycle oscillation in pitch - the elevators going from full up to till down as fast as they could and the airplane broke up and crashed. Adains was killed on impact.
Mitigation: Science experiments aboard Lynx will be on their onenclectrical buss. This buss will be separate from the instrument busses. The pilot's job is to fly the vehicle. lixperiments will normally be operated by an onboard Principal Investigator (PI). If an experiment is pilotoperated, the pilot's involvement will be limited to him llipping a switch at a predetermined time in the flight profile. If an experiment has a malfunction, the pilot will simply tumit off. In addition. while Lynx can be flown sately throughout its flight profile with no electrical power. a vehiele clectrical problen will trigger an abort and return to base.

[^0]: Participant enjoyment may be diminished by nuisance or distraction. Intikely to allect decision to fly.

[^1]: ＂errisros
 $x-15:$

